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OBJECTIVES RESULTS

To illustrate how to evaluate and optimize among strategies for developing backup compounds in

conjunction with a lead compound, accounting for probabilistic learning about the product profile . . . .

both within and across compounds, market value as a function of this profile, and differing dev- Fig. 2 illustrates random evolutions of an expected drug profile through development,

elopment costs. This is important to manage risk and improve productivity in drug development. based on information available through each phase. Fig. 3 shows how uncertainty
decreases, helped by learning from L especially in the early phases. Simulation results
(Fig. 4) show that in the example problem, higher correlations with L makes B less
valuable, even not worth developing if both correlation and cannibalization levels are

I NTRODUCTIO N high, due to likely cannibalization losses if L succeeds, or additional failure of B in the

case that L fails.

Pharmacometricians typically build exposure-response models for efficacy, and sometimes side Simultaneous development of a second backup with identical inputs was evaluated as
effects, of individual compounds, using Monte Carlo simulation to test and optimize dosing, well. With >~35% cannibalization for each backup, any correlation with the lead compound
sample sizes, and other trial design factors. These models can provide input into more strategic resulted in negative incremental ENPV for the second backup. However, with 35%
Monte Carlo simulation models to support economic go/no-go decisions and development cannibalization, low correlations with L resulted in small positive incremental ENPVs.
program design [1, 2], and in partlcular d.eCISlonS about whether anq how to advance backup Figure 2. Five of 1000 simulated Figure 3. Decrease in standard
compounds. Many factors complicate optimal backup compound decisions but can be accounted changes in expected Efficacy and deviation of Efficacy due to learning in
for in simulations, including the: Side E{fectsrﬁrom prgclir&ica 43 each phase, fo:jEE before andhafter
. . (Initial) to Phase 1, 2A, 2B, an cross-compound learning with L. Note
potential to learn from lead compound results throughout development (asterisk is simulated true value). there is no Efficacy learning in Phase 1.
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An example problem was specified in which a lead compound “L” is entering Phase 2B and - Prior 1 2A 2B 3
its backup “B” is ready for Phase 1 (or multiple backups). L has low positive expected Expected Efficacy Phase

value, e.g., due to disappointing Proof-of-Concept results, raising the question of how B
should be advanced. Efficacy and Side Effect outcomes of B have a specified correlation

Figure 4. Incremental Expected NPV for B vs. its correlation with L, for 3 levels of

with those of L, which was varied from 0% to 100%. If both L and B reach the market, a market share cannibalization.

specified fraction of B’s market share, which was varied from 0% to 100%, is lost to 180 - )

“cannibalization” by the other drug. Dosing decisions were left implicit for simplicity. . 0% Cannib.*
=

A tool to simulate development of L and B by phase and their net expected value & 120 4 * Cannibalization of market share from Lead compound

(expected market value minus development cost) was created in Microsoft Excel (Fig. 1). E

Normal Bayesian learning (see box) from simulated results of each phase updated prior E 60 - 50% Cannib.*

distributions for Efficacy (E) and Side Effects (SE). Simulated “true” values of E and SE = Go

were used to simulate these phase outcomes and determine the expected market value if % 0

successfully developed: a function of E and SE and development costs. Development was IS

stopped if the expected Net Present Value (ENPV) for completing development after a g -60 - 100% Cannib.*

specified phase (2A here) became negative. (Note: while this rule is simple to implement £

and may be reasonably descriptive, it is suboptimal, because a negative ENPV could turn 120 : : : : .

positive after properly accounting for the option to stop development later.) Sunk costs 0 0.2 0.4 0.6 0.8 1

from completed phases were properly ignored for go/no-go decisions but included in the

. . . ; Correlation of Backup with Lead Compound
final ENPV. Averaging ENPV over the 1000 simulations gave the overall ENPV.

Normal Learning Models

CONCLUSIONS AND RESEARCH DIRECTIONS

(a) From Trial Observations (b) From Lead to Backup
X = Unknown population mean X = Lead compound measure
X; = mean of n observations of X Y = Backup compound measure +  Simulations of intra-compound and inter-compound learning can be used to optimize
Correlation p development of a lead compound together with backups, including the risk that a backup
@ #@ @4—@ Slope b = p 0’/0 #@ is so correlated with the lead compound that it will perform no better.
) . 2 2 ) y .X 5 » Economic factors can and should be incorporated in the simulated decisions, such as
N(Ho, 00”) Uncond.: N(}, 02/n + 0o” ) N(Ho 0,7) Uncond.: N(py, oy ) differing remaining development costs and the loss of value when the backup must share
Given X: N(X, 0?/n) Given X: N(py *+ b(X - py), the market with the lead compound.
Bayes’ Bayes’ oy’ - b2 oy’ ) » Thus simulations can properly weigh alternative development strategies—and may even be
Rule Rule critical to making and justifying difficult backup compound decisions.
» To more rigorously account for downstream decisions and to evaluate many backups
@4 @ ®_’®4 @ simultaneously, optimization techniques [3, 4] can be combined with simulation, though
N( Mo * (% - 1) G/ (0g+ 62),  N(x,, 0) Given X;: Given X;: N( Hy + b(H,~ 1), diminishing returns are expected from multiple backups [5].
1/ (/05 + n/c?) ) N(p,, 0,2) 0/ - b? (62 - 6,7) )

(updated as at left) Potential research directions i‘n‘clude: ‘ ‘

* Improve the go/no-go decision rule for each compound (with or without backups) to
account for the option to stop development in the future, not just complete development
vs. stop immediately.

» Consider the dose selection sub-problem explicitly.

(take weighted avg. mean, add precisions)

Figure 1. Part of simulation spreadsheet for backup compound (lead compound is
similar without entries in blue).

Development Simulation with Normal Learning Model S : : : : :
Backup Gompound| Example with Learinglirom Lead Gompound (ial ks tolits shee) » Incorporate more detail within each phase, in correlations, and in Bayesian learning.
# Prasts bonn Load o (19 -2 * Include more detail in market value, e.g., its decline over time due to competition.
Efficacy Corr. Side Effects Corr.
Prior Mean, Correlation w/Lead 1] 05 [ a[ o5  (blank input: same as Efficacy)
Prior SD 2
Mkt Value Weight ($M) 100
Mkt value = Wtg 25 - Wts 25 100% | cannibalization loss of Backup's market share if both Lead & Backup reach market (0-100%)
All Phases Remainder Starting in Phase (phase being entered: 1 or 2A or 2B
Phase: Total Total
PV Dewelopment Cost ($M) 435 10 25 100 300 435
nin Phase -25 -50 -100 -3[)0 475 25 50 100 300 475
Efficac Side Effects
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SD of Mean of Phase Data 2 04243 02 0058 3 0804243 02 0058 development decisions. Drug Discovery Today 6(22):1165-1170, November 2001.
Posterior Standard Deviation 2 2 0415 01802 0.085” 3 0773 0.3719 0.176 0.055 . : : :
Slope of Mean wiLead Cpd 05 05 1.0427 1.6247 0 15 03865 0.9482 1.5 0 http://www.pharsight.com/library/hivj%20case.pdf
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