
To illustrate how to evaluate and optimize among strategies for developing backup compounds in 

conjunction with a lead compound, accounting for probabilistic learning about the product profile 

both within and across compounds, market value as a function of this profile, and differing dev-

elopment costs. This is important to manage risk and improve productivity in drug development. 
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INTRODUCTION 

Pharmacometricians typically build exposure-response models for efficacy, and sometimes side 

effects, of individual compounds, using Monte Carlo simulation to test and optimize dosing, 

sample sizes, and other trial design factors. These models can provide input into more strategic 

Monte Carlo simulation models to support economic go/no-go decisions and development 

program design [1, 2], and in particular decisions about whether and how to advance backup 

compounds. Many factors complicate optimal backup compound decisions but can be accounted 

for in simulations, including the: 

• potential to learn from lead compound results throughout development 

• risk that a backup is so correlated with the lead that it will perform no better 

• differing remaining development costs (ignoring sunk costs from previous phases) 

• loss of total market share when a successfully developed backup must share the market 

with the lead compound 

• value of speed to market, which may give the lead compound an insurmountable advantage. 

• Simulations of intra-compound and inter-compound learning can be used to optimize 

development of a lead compound together with backups, including the risk that a backup 

is so correlated with the lead compound that it will perform no better. 

• Economic factors can and should be incorporated in the simulated decisions, such as 

differing remaining development costs and the loss of value when the backup must share 

the market with the lead compound. 

• Thus simulations can properly weigh alternative development strategies—and may even be 

critical to making and justifying difficult backup compound decisions. 

• To more rigorously account for downstream decisions and to evaluate many backups 

simultaneously, optimization techniques [3, 4] can be combined with simulation, though 

diminishing returns are expected from multiple backups [5]. 

 

Potential research directions include: 

• Improve the go/no-go decision rule for each compound (with or without backups) to 

account for the option to stop development in the future, not just complete development 

vs. stop immediately. 

• Consider the dose selection sub-problem explicitly. 

• Incorporate more detail within each phase, in correlations, and in Bayesian learning. 

• Include more detail in market value, e.g., its decline over time due to competition. 
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RESULTS 

Fig. 2 illustrates random evolutions of an expected drug profile through development, 

based on information available through each phase. Fig. 3 shows how uncertainty 

decreases, helped by learning from L especially in the early phases. Simulation results 

(Fig. 4) show that in the example problem, higher correlations with L makes B less 

valuable, even not worth developing if both correlation and cannibalization levels are 

high, due to likely cannibalization losses if L succeeds, or additional failure of B in the 

case that L fails. 

 

Simultaneous development of a second backup with identical inputs was evaluated as 

well. With >~35% cannibalization for each backup, any correlation with the lead compound 

resulted in negative incremental ENPV for the second backup. However, with 35% 

cannibalization,  low correlations with L resulted in small positive incremental ENPVs. 
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An example problem was specified in which a lead compound “L” is entering Phase 2B and 

its backup “B” is ready for Phase 1 (or multiple backups). L has low positive expected 

value, e.g., due to disappointing Proof-of-Concept results, raising the question of how B 

should be advanced. Efficacy and Side Effect outcomes of B have a specified correlation 

with those of L, which was varied from 0% to 100%. If both L and B reach the market, a 

specified fraction of B’s market share, which was varied from 0% to 100%, is lost to 

“cannibalization” by the other drug. Dosing decisions were left implicit for simplicity. 

 

A tool to simulate development of L and B by phase and their net expected value 

(expected market value minus development cost) was created in Microsoft Excel (Fig. 1).  

Normal Bayesian learning (see box) from simulated results of each phase updated prior 

distributions for Efficacy (E) and Side Effects (SE). Simulated “true” values of E and SE 

were used to simulate these phase outcomes and determine the expected market value if 

successfully developed: a function of E and SE and development costs.  Development was 

stopped if the expected Net Present Value (ENPV) for completing development after a 

specified phase (2A here) became negative. (Note: while this rule is simple to implement 

and  may be reasonably descriptive, it is suboptimal, because a negative ENPV could turn 

positive after properly accounting for the option to stop development later.) Sunk costs 

from completed phases were properly ignored for go/no-go decisions but included in the 

final ENPV. Averaging  ENPV over the 1000 simulations gave the overall ENPV. 

 

Normal Learning Models 
 

(a) From Trial Observations (b) From Lead to Backup 

X = Unknown population mean X = Lead compound  measure 

X1 = mean of n observations of X Y = Backup compound measure 
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Figure 2. Five of 1000 simulated 
changes in expected Efficacy and 
Side Effects from preclinical 
(Initial) to Phase 1, 2A, 2B, and 3 
(asterisk is simulated true value). 

Figure 3. Decrease in standard 
deviation of Efficacy due to learning in 
each phase, for B before and after 
cross-compound learning with L. Note 
there is no Efficacy learning in Phase 1. 

Figure 4. Incremental Expected  NPV for B vs. its correlation with L, for 3 levels of 
market share cannibalization. 

Figure 1. Part of simulation spreadsheet for backup compound (lead compound is 
similar without entries in blue). 

Development Simulation with Normal Learning Model
Backup Compound Example with Learning from Lead Compound (via links to its sheet)

# Phases behind Lead Cpd. (1-3) 2

Efficacy Corr. Side Effects Corr.

Prior Mean, Correlation w/Lead 1 0.5 1 0.5 (blank input: same as Efficacy)

Prior SD 2 3

Mkt Value Weight ($M) 100 50

  Mkt value = WtE 2E - WtS 2S 100% cannibalization loss of Backup's market share if both Lead & Backup reach market (0-100%)

All Phases Remainder Starting in Phase 1 (phase being entered: 1 or 2A or 2B or 3)

Phase: 1 2A 2B 3 Total 1 2A 2B 3 Total

PV Development Cost ($M) 10 25 100 300 435 10 25 100 300 435

n in Phase 25 50 100 300 475 25 50 100 300 475

Efficacy Side Effects

Prior 1 2A 2B 3 Prior 1 2A 2B 3

SD per Subject Studied 3 2 1 4 3 2 1

SD of Mean of Phase Data 2 0.4243 0.2 0.058 3 0.8 0.4243 0.2 0.058

Posterior Standard Deviation 2 2 0.415 0.1802 0.055 3 0.773 0.3719 0.176 0.055

Slope of Mean w/Lead Cpd. 0.5 0.5 1.0427 1.6247 0 1.5 0.3865 0.9482 1.59 0

Posterior SD w/Lead Results 2 1.7349 0.364 0.1802 0.055 3 0.6737 0.3264 0.176 0.055

P(regulatory success) 0.85 Note: regulatory success/failure is not simulated; instead its probability derates (multiplies) market value.

Random Efficacy and Side Effect Levels Given Lead Compound Results, and Mean Phase Outcomes Prior & Posterior Mean if Develop (wtd. av. of updated-prior & sample means)

(Unknown) (w/sunk cost) Efficacy Side Effects Efficacy Side Effects

Sim. # Efficacy Side Ef. ENPV | dev. 1 2A 2B 3 1 2A 2B 3 Prior 1 2A 2B 3

1 0.2747 2.8507 -638.7 0.1062 0.1654 0.168 3.9651 2.9906 3.168 2.879 1 0.8111 0.3248 0.2023 0.171

2 0.0861 -0.649 -371.9 0.0513 -0.493 0.125 -0.707 -1.026 -0.628 -0.659 1 1.2199 0.311 -0.307 0.085

3 4.0705 -3.331 988.87 3.8226 3.8844 4.037 -3.603 -3.974 -3.079 -3.38 1 2.4584 4.0516 3.9231 4.026

4 0.3958 0.5001 -383.3 0.7194 0.3986 0.379 0.5117 0.2542 0.549 0.463 1 0.1788 0.4089 0.401 0.381

5 1.453 2.4914 -441.3 2.2682 1.7709 1.456 2.8059 2.1729 2.081 2.457 1 1.1606 2.5241 1.9455 1.501

6 -2.176 1.0001 -501.2 -2.613 -2.027 -2.158 0.2594 1.3509 0.749 1.03 1 2.1924 -2.46 -2.128 -2.155

7 4.8339 3.061 1634.5 4.9446 4.7865 4.877 1.9744 2.2526 2.981 3.037 1 2.3323 4.7431 4.7765 4.868

8 -0.257 8.2641 -13430 0.2451 -0.068 -0.258 8.8692 8.1396 8.206 8.209 1 1.5523 0.4259 0.0465 -0.23

9 1.8064 5.251 -1756 1.8303 1.7259 1.787 4.657 5.2071 5.426 5.28 1 0.2406 1.7499 1.7315 1.782

10 -2.839 0.8392 -499.2 -2.595 -2.86 -2.785 1.5614 0.9658 0.693 0.89 1 -0.153 -2.599 -2.799 -2.786

1000 2.9919 -1.218 222.94 2.8684 2.9507 3.088 -0.639 -1.45 -1.039 -1.224 1 1.6281 2.4829 2.8422 3.065

Mean 0.9988 0.9953 -638.6 0.9986 0.9989 0.999 0.9942 0.9936 0.995 0.993 1 1.004 0.9992 0.9989 0.9989

X X1 

N( µ0, σ0
2 ) Uncond.: N( µ, σ2/n + σ0

2 ) 

Given X:  N( X, σ2/n ) 

X X1 

N( µ0 + (x1 - µ) σ0
2/(σ0

2+ σ2), 

    1 / (1/σ0
2 + n/σ2) ) 

(take weighted avg. mean, add precisions) 

N(x1, 0) 

Bayes’ 
Rule 

X Y X1 
Correlation ρ, 

Slope b = ρ σy/σx 

N( µx, σx
2 ) Uncond.: N( µY, σY

2 ) 

Given X:  N( µY + b(X - µX),  

                  σY
2 - b2 σX

2 ) 

X Y X1 

Given X1: 

N( µx′,  σx′
2 ) 

(updated as at left) 

Given X1: N( µY + b(µx′- µx), 

            σY
2 - b2 (σX

2 - σX′
2) ) 

Bayes’ 
Rule 
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