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INTRODUCTION AND PURPOSE Figure 1. Schematic Diagram of a PK Model for G-CSF RESULTS Goodness of Fit Plots observed (in red) vs. model-predicted (in green)
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PK Modeling of digitized G-CSF concentration-time profiles (7) after
IV infusion and Subcutaneous (SC) administration of filgrastim in
humans was performed simultaneously with Naive pooled method
by Phoenix WinNonlin 6.3.

Zero-order input is an additional variation to these models.



