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Introduction

« Transit compartment models described by systems of ordinary
differential equations (ODEs) have been widely used in the
pharmacokinetics and pharmacodynamics studies to describe

delayed outcomes.

« One of the obvious disadvantages of this type of models is that it may
require a large number of differential equations to fit the data.

« In addition, one needs to manually find a proper value for the number of
compartments.

« It is also not adequate to describe some complex features such as
double/multiple-peak phenomenon after oral administration.

« We propose to use a distributed delay approach to model
delayed outcomes that does not suffer these disadvantages, and

this approach is conceptually similar to red cell lifespan models
3] with each individual assumed to have its own lifespan.

Objective

To demonstrate that the distributed delay approach is general

enough to incorporate a wide array of models as special cases
including transit compartment models, typical absorption mod-
els, and models for describing atypical absorption profiles such
as double/multiple-peak phenomenon after oral administration
in pharmacokinetics.

Methods

Let k,, denote the inflow of a signal to a terminating compartment,
and 7 be a random variable representing the delay time with
probability density function (PDF) GG. Then the delayed signal
is given by

S(t) = [~ G(r)k,(t — 7)dr, (1)

which can be equivalently written as

S(t) = /_too G(t — s)k.(s)ds.

More generally, for the case where multiple signals flow into a
terminating compartment, the delayed signals can be expressed
as follows:

S(0)= 35,00 2

with .
Sj(t) = | Gi(7)k;(t —7)dr.
Here Ny denotes the number of signals, £, ; denotes the inflow

of the jth signal to the terminating compartment, and G is the
PDF of the delayed time 7, for the jth signal.

« It delay times arise from PK absorption phase, then § is the
input function feeding into the central compartment.

= If delay time are due to the distributional delay for PK/PD
link, then & is the input function feeding into a hypothetical

effect compartment.

« If delay times are for the observed drug effect, then & is the
delayed drug effect.
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Notations

= §: Dirac delta (or impulse) function.

- I'(t; k,v): PDF of a gamma distribution with rate k and shape
parameter v;

« if v is a positive integer, then it is the PDF of an Erlang distribution;
« if v =1, then it is the PDF of an exponential distribution.

= D; or Dj;: dose administered.
" Tgosesi O oo ji: dOSINg time point.
- 1.,.;: lag time.

Theoretical Results
Impulsive flows with general delays

Consider the single-pathway scenario (1) with multiple bolus (im-
pulsive) dosing events (i.e., k, = X" D;0(t —t,..;) with m being
the number of dosing events). For this case, (1) reduces to

S(t) = > DGt —t,..,) (3)

which is the input function feeding into the central compartment
considered in [6| and [7| with a gamma distributed delay (that is,
G is the PDF of a gamma distribution).

Consider the multiple-pathway scenario (2) with multiple bolus
dosing events for each pathway (i.e, k, ; = S Did(t — toji),
i=1,2,...,m;,7=1,2,..., Ng). In this case, (1) reduces to

Ny my

S(t)=> > DGt — tuwji). (4)

j=11i=1

Point distributed (or discrete) delays with general &,

Consider the case where (G is a linear combination of Dirac delta
functions and is given by G(t) = X" w;o(t — t,;), w; > 0 and

> w; = 1. We found that for this case (1) reduces to

J
S(t) = Z ijm(t _ tlag,j)

1=1
= For a special case with a pointed distributed delay at 0 (i.e.,
no lag time and G(t) = d(t)) and constant infusion (i.e., k, is
a positive constant for a duration of time and then zero

afterwards), the resulting § is the input function feeding into
the central compartment for the zero-order absorption model.

Reducibility of a Delayed Signal into a
System of ODEs

If we make additional assumption on the form of G, then one
can reduce (1) into a system of ODEs by using the so-called
linear chain trick |1|. Specifically, a necessary and sufficient
condition for the reducibility of (1) to a system of ODEs is
that G is a linear combination of functions

exp(§t), texp(Et), ..., " exp(&t)
with m being a positive integer and & being a complex number.

Examples of such G: PDF of an Erlang distribution, PDF of
a mixture of Erlang distributions.

Frlang distributed delays with general k,,

Consider the single-pathway scenario (1) with an Erlang dis-
tributed delay (i.e., G(t) = I'(t;k,n), n is a positive integer).
For this case, (1) reduces to a transit compartment model

11(t) = kk,(t) — kxi(t),

T;(t) = kx;1(t) — kxy(t), 1=2,3,...,n )
with output x,, = S. If we assume that k,(t) = 0 for ¢ < 0, then
the initial condition for (5) is 2;(0) =0,7=1,2,...,n.

- If k,.(t) = D4(t), then (5) has zero initial conditions and it is
equivalent to

1(t) = —kxi(2),
Clﬁz(t) — kxi_l(t) — /CZE‘Z(t), 1 = 2, 3, ey 1L, (6)
5131(0) — k’D, QEZ(()) — O, 1 = 2,3, ey L.

Note: (6) is a special case of (3) with an Erlang distributed

delay and single bolus dose at time 0; and (6) with n = 1 is the
absorption compartment for the first-order absorption model.

« For a single compartment and unknown k,,, the resulting § is
the input function considered in |2| feeding into the central
compartment for the variability of absorption approach used to

model the double-peak phenomenon after oral administration.

« It £, is the solution of an Emax model, then the resulting S is
the delayed drug effect (e.g., a transit compartment model
with 4 compartments was considered in |4, §|).

« It £, denotes the solution of an indirect response model, then
the resulting S is the delayed indirect response (e.g., see [3]).

Consider the multiple-pathway scenario (2) with an Erlang dis-
tributed delay for each pathway. For this case, each of §;’s is the
output of some transit compartment model, and hence S is the
sum of the outputs of all these transit compartment models.

« For a special two-pathway case with a single bolus dosing
event at time 0 for each pathway, the resulting S is the input
function for the parallel inputs approach 2] to model the

double-peak phenomenon (Note: this is also a special case of
(4) with an Erlang distributed delay and a single bolus dosing
event at time O for each pathway).

« For a two-pathway case with exponential distributed delays
and bolus dosing at time 0 for one pathway and bolus dosing at
time ¢, for the other one, the resulting & is the input function
for modeling two parallel first-order absorption processes [5]
(Note: this is also a special case of (4) with exponential
distributed delay and single bolus dosing for each pathway).

Mixture of discrete delays and Erlang Distributed Delays

« For a two-pathway case with an exponential distributed delay
and bolus dosing at time 0 for one pathway and a pointed
distributed delay at 0 and a constant infusion dosing event for
the other pathway, the resulting § is the input function for the
mixture of first-order absorption and zero-order absorption

model (e.g., [5]).

Numerical Results

= Data set |2]: consisting of plasma concentration-time profiles
for 12 subjects following an oral dose of veralipride at time 0.

« The parallel inputs approach is one of the two methods used in

2| to model the double-peak feature presented in this data set.

Note: It requires numerous different combination of number of
compartments in each pathway to be manually tried, and
hence it is very inefficient and time-consuming.

« Instead of manually identifying the number of compartments
for each pathway, we estimate them along with other
parameters using the input function given in (4) with single
dosing event and a gamma distributed delay for each pathway.
Through this approach, we obtained reasonably good fitting

results for all the subjects and similar residual mean square
errors as those obtained in |2|. Figure 1 illustrates model

fitting results for two example individuals using FOCE in
Phoenix®” NLME™ (Pharsight /Certara).
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Figure 1: Model fitting results for two individuals, where red circle denotes observations and
green solid line represents predicated model solution.

Conclusions

The distributed delay approach provides a more general and flex-
ible way to model delayed outcomes including absorption, distri-
bution, PK/PD link, drug response etc., and hence can capture
more complex features.
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